Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights (2024)

1. Ogden C.L., Carroll M.D., Kit B.K., Flegal K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–814. doi:10.1001/jama.2014.732. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C., Mullany E.C., Biryukov S., Abbafati C., Abera S.F., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi:10.1016/S0140-6736(14)60460-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Peeters A., Barendregt J.J., Willekens F., Mackenbach J.P., Al Mamun A., Bonneux L. NEDCOM, the Netherlands Epidemiology and Demography Compression of Morbidity Research Group. Obesity in adulthood and its consequences for life expectancy: A life-table analysis. Ann. Intern. Med. 2003;138:24–32. doi:10.7326/0003-4819-138-1-200301070-00008. [PubMed] [CrossRef] [Google Scholar]

4. Prospective Studies Collaboration. Whitlock G., Lewington S., Sherliker P., Clarke R., Emberson J., Halsey J., Qizilbash N., Collins R., Peto R. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096. doi:10.1016/S0140-6736(09)60318-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Adams K.F., Leitzmann M.F., Ballard-Barbash R., Albanes D., Harris T.B., Hollenbeck A., Kipnis V. Body mass and weight change in adults in relation to mortality risk. Am. J. Epidemiol. 2014;179:135–144. doi:10.1093/aje/kwt254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Kaila B., Raman M. Obesity: A review of pathogenesis and management strategies. Can. J. Gastroenterol. 2008;22:61–68. doi:10.1155/2008/609039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Barnard N.D., Levin S.M., Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J. Acad. Nutr. Diet. 2015;115:954–969. doi:10.1016/j.jand.2014.11.016. [PubMed] [CrossRef] [Google Scholar]

8. Huang R.Y., Huang C.C., Hu F.B., Chavarro J.E. Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. J. Gen. Intern. Med. 2016;31:109–116. doi:10.1007/s11606-015-3390-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Turner-McGrievy G.M., Davidson C.R., Wingard E.E., Wilcox S., Frongillo E.A. Comparative effectiveness of plant-based diets for weight loss: A randomized controlled trial of five different diets. Nutrition. 2015;31:350–358. doi:10.1016/j.nut.2014.09.002. [PubMed] [CrossRef] [Google Scholar]

10. Ferdowsian H.R., Barnard N.D., Hoover V.J., Katcher H.I., Levin S.M., Green A.A., Cohen J.L. A multicomponent intervention reduces body weight and cardiovascular risk at a GEICO corporate site. Am. J. Health Promot. 2010;24:384–387. doi:10.4278/ajhp.081027-QUAN-255. [PubMed] [CrossRef] [Google Scholar]

11. Wright N., Wilson L., Smith M., Duncan B., McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr. Diabetes. 2017;7:e256. doi:10.1038/nutd.2017.3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Tonstad S., Butler T., Yan R., Fraser G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32:791–796. doi:10.2337/dc08-1886. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Slavin J., Carlson J. Carbohydrates. Adv. Nutr. 2014;5:760–761. doi:10.3945/an.114.006163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Rolls B.J. The relationship between dietary energy density and energy intake. Physiol. Behav. 2009;97:609–615. doi:10.1016/j.physbeh.2009.03.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. De Oliveira M.C., Sichieri R., Mozzer R.A.V. A low-energy-dense diet adding fruit reduces weight and energy intake in women. Appetite. 2008;51:291–295. doi:10.1016/j.appet.2008.03.001. [PubMed] [CrossRef] [Google Scholar]

16. Flood-Obbagy J.E., Rolls B.J. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009;52:416–422. doi:10.1016/j.appet.2008.12.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Rolls B.J., Roe L.S., Meengs J.S. Reductions in portion size and energy density of foods are additive and lead to sustained decreases in energy intake. Am. J. Clin. Nutr. 2006;83:11–17. doi:10.1093/ajcn/83.1.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Pérez-Escamilla R., Obbagy J.E., Altman J.M., Essery E.V., McGrane M.M., Wong Y.P., Spahn J.M., Williams C.L. Dietary energy density and body weight in adults and children: A systematic review. J. Acad. Nutr. Diet. 2012;112:671–684. doi:10.1016/j.jand.2012.01.020. [PubMed] [CrossRef] [Google Scholar]

19. Shintani T.T., Hughes C.K., Beckham S., O’Connor H.K. Obesity and cardiovascular risk intervention through the ad libitum feeding of traditional Hawaiian diet. Am. J. Clin. Nutr. 1991;53:1647S–1651S. doi:10.1093/ajcn/53.6.1647S. [PubMed] [CrossRef] [Google Scholar]

20. Najjar R.S., Moore C.E., Montgomery B.D. A defined, plant-based diet utilized in an outpatient cardiovascular clinic effectively treats hypercholesterolemia and hypertension and reduces medications. Clin. Cardiol. 2018;41:307–313. doi:10.1002/clc.22863. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Najjar R.S., Moore C.E., Montgomery B.D. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018;41:1062–1068. doi:10.1002/clc.23027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Tuohy K.M., Conterno L., Gasperotti M., Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012;60:8776–8782. doi:10.1021/jf2053959. [PubMed] [CrossRef] [Google Scholar]

23. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi:10.1038/4441022a. [PubMed] [CrossRef] [Google Scholar]

24. Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.I., Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011;94:58–65. doi:10.3945/ajcn.110.010132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Castaner O., Goday A., Park Y.M., Lee S.H., Magkos F., Shiow S.A.T.E., Schröder H. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018;2018:4095789. doi:10.1155/2018/4095789. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Lin H., An Y., Tang H., Wang Y. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J. Agric. Food Chem. 2019;67:3624–3632. doi:10.1021/acs.jafc.9b00249. [PubMed] [CrossRef] [Google Scholar]

27. Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi:10.1194/jlr.R500013-JLR200. [PubMed] [CrossRef] [Google Scholar]

28. Fiorucci S., Mencarelli A., Palladino G., Cipriani S. Bile-acid-activated receptors: Targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 2009;30:570–580. doi:10.1016/j.tips.2009.08.001. [PubMed] [CrossRef] [Google Scholar]

29. Islam K.B.M.S., f*ckiya S., Hagio M., Fujii N., Ishizuka S., Ooka T., Ogura Y., Hayashi T., Yokota A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–1781. doi:10.1053/j.gastro.2011.07.046. [PubMed] [CrossRef] [Google Scholar]

30. Wu C.C., Weng W.L., Lai W.L., Tsai H.P., Liu W.H., Lee M.H., Tsai Y.C. Effect of lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid. Based Complement. Alternat. Med. 2015;2015:391767. doi:10.1155/2015/391767. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Ibrugger S., Vigsnaes L.K., Blennow A., Skuflic D., Raben A., Lauritzen L., Kristensen M. Second meal effect on appetite and fermentation of wholegrain rye foods. Appetite. 2014;80:248–256. doi:10.1016/j.appet.2014.05.026. [PubMed] [CrossRef] [Google Scholar]

32. Mollard R.C., Wong C.L., Luhovyy B.L., Anderson G.H. First and second meal effects of pulses on blood glucose, appetite, and food intake at a later meal. Appl. Physiol. Nutr. Metab. 2011;36:634–642. doi:10.1139/h11-071. [PubMed] [CrossRef] [Google Scholar]

33. Wolever T.M., Jenkins D.J., Ocana A.M., Rao V.A., Collier G.R. Second-meal effect: Low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am. J. Clin. Nutr. 1988;48:1041–1047. doi:10.1093/ajcn/48.4.1041. [PubMed] [CrossRef] [Google Scholar]

34. Jenkins D., Wolever T., Taylor R.H., Griffiths C., Krzeminska K., Lawrie J.A., Bennett C.M., Goff D.V., Sarson D.L., Bloom S.R. Slow release dietary carbohydrate improves second meal tolerance. Am. J. Clin. Nutr. 1982;35:1339–1346. doi:10.1093/ajcn/35.6.1339. [PubMed] [CrossRef] [Google Scholar]

35. Mollard R.C., Wong C.L., Luhovyy B.L., Cho F., Anderson G.H. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later. Appl. Physiol. Nutr. Metab. 2014;39:849–851. doi:10.1139/apnm-2013-0523. [PubMed] [CrossRef] [Google Scholar]

36. Kristensen M.D., Bendsen N.T., Christensen S.M., Astrup A., Raben A. Meals based on vegetable protein sources (beans and peas) are more satiating than meals based on animal protein sources (veal and pork)—A randomized cross-over meal test study. Food Nutr. Res. 2016;60:32634. doi:10.3402/fnr.v60.32634. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Brighenti F., Benini L., Del Rio D., Casiraghi C., Pellegrini N., Scazzina F., Jenkins D.J., Vantini I. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am. J. Clin. Nutr. 2006;83:817–822. doi:10.1093/ajcn/83.4.817. [PubMed] [CrossRef] [Google Scholar]

38. Tseng C.-H., Wu C.-Y. The gut microbiome in obesity. J. Formos. Med. Assoc. 2019;118:S3–S9. doi:10.1016/j.jfma.2018.07.009. [PubMed] [CrossRef] [Google Scholar]

39. Nilsson A., Johansson E., Ekström L., Björck I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE. 2013;8:e59985. doi:10.1371/journal.pone.0059985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Freeland K.R., Wilson C., Wolever T.M.S. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br. J. Nutr. 2010;103:82–90. doi:10.1017/S0007114509991462. [PubMed] [CrossRef] [Google Scholar]

41. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi:10.1038/nature12820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Kim M.S., Hwang S.S., Park E.J., Bae J.W. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ. Microbiol. Rep. 2013;5:765–775. doi:10.1111/1758-2229.12079. [PubMed] [CrossRef] [Google Scholar]

43. Wong M.W., Yi C.H., Liu T.T., Lei W.Y., Hung J.S., Lin C.L., Lin S.Z., Chen C.L. Impact of vegan diets on gut microbiota: An update on the clinical implications. Tzu Chi Med. J. 2018;30:200–203. [PMC free article] [PubMed] [Google Scholar]

44. Barazzoni R., Gortan Cappellari G., Ragni M., Nisoli E. Insulin resistance in obesity: An overview of fundamental alterations. Eat. Weight Disord. 2018;23:149–157. doi:10.1007/s40519-018-0481-6. [PubMed] [CrossRef] [Google Scholar]

45. Evert A.B., Boucher J.L., Cypress M., Dunbar S.A., Franz M.J., Mayer-Davis E.J., Neumiller J.J., Nwankwo R., Verdi C., Urbanski P., et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2013;36:3821–3842. doi:10.2337/dc13-2042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Bremer A.A., Auinger P., Byrd R.S. Sugar-sweetened beverage intake trends in US adolescents and their association with insulin resistance-related parameters. J. Nutr. Metab. 2010;2010:196476. doi:10.1155/2010/196476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Aune D., Norat T., Romundstad P., Vatten L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013;28:845–858. doi:10.1007/s10654-013-9852-5. [PubMed] [CrossRef] [Google Scholar]

48. Khan T.A., Sievenpiper J.L. Controversies about sugars: Results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 2016;55(Suppl. 2):25–43. doi:10.1007/s00394-016-1345-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Della Pepa G., Vetrani C., Vitale M., Riccardi G. Wholegrain intake and risk of type 2 diabetes: Evidence from epidemiological and intervention studies. Nutrients. 2018;10:1288. doi:10.3390/nu10091288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Anderson J.W., Ward K. High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. Am. J. Clin. Nutr. 1979;32:2312–2321. doi:10.1093/ajcn/32.11.2312. [PubMed] [CrossRef] [Google Scholar]

51. Rachek L.I. Free fatty acids and skeletal muscle insulin resistance. Prog. Mol. Biol. Transl. Sci. 2014;121:267–292. [PubMed] [Google Scholar]

52. Nolan C.J., Larter C.Z. Lipotoxicity: Why do saturated fatty acids cause and monounsaturates protect against it? J. Gastroenterol. Hepatol. 2009;24:703–706. doi:10.1111/j.1440-1746.2009.05823.x. [PubMed] [CrossRef] [Google Scholar]

53. Koves T.R., Ussher J.R., Noland R.C., Slentz D., Mosedale M., Ilkayeva O., Bain J., Stevens R., Dyck J.R., Newgard C.B., et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56. doi:10.1016/j.cmet.2007.10.013. [PubMed] [CrossRef] [Google Scholar]

54. Jheng H.F., Tsai P.J., Guo S.M., Kuo L.H., Chang C.S., Su I.J., Chang C.R., Tsai Y.S. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 2012;32:309–319. doi:10.1128/MCB.05603-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Chen Z., Zuurmond M.G., van der Schaft N., Nano J., Wijnhoven H.A.H., Ikram M.A., Franco O.H., Voortman T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018;33:883–893. doi:10.1007/s10654-018-0414-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. US Department of Agriculture Nutrient Database. [(accessed on 16 October 2019)]; Available online: http://www.nal.usda.gov/fnic/foodcomp/search

57. Bachmann O.P., Dahl D.B., Brechtel K., Machann J., Haap M., Maier T., Loviscach M., Stumvoll M., Claussen C.D., Schick F., et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001;50:2579–258484. doi:10.2337/diabetes.50.11.2579. [PubMed] [CrossRef] [Google Scholar]

58. Lee S., Boesch C., Kuk J.L., Arslanian S. Effects of an overnight intravenous lipid infusion on intramyocellular lipid content and insulin sensitivity in African-American versus Caucasian adolescents. Metabolism. 2013;62:417–423. doi:10.1016/j.metabol.2012.09.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Roden M., Krssak M., Stingl H., Gruber S., Hofer A., Furnsinn C., Moser E., Waldhäusl W. Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes. 1999;48:358–364. doi:10.2337/diabetes.48.2.358. [PubMed] [CrossRef] [Google Scholar]

60. Santomauro A.T., Boden G., Silva M.E., Rocha D.M., Santos R.F., Ursich M.J., Strassmann P.G., Wajchenberg B.L. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 1999;48:1836–1841. doi:10.2337/diabetes.48.9.1836. [PubMed] [CrossRef] [Google Scholar]

61. Hocking S., Samocha-Bonet D., Milner K.L., Greenfield J.R., Chisholm D.J. Adiposity and insulin resistance in humans: The role of the different tissue and cellular lipid depots. Endocr. Rev. 2013;34:463–500. doi:10.1210/er.2012-1041. [PubMed] [CrossRef] [Google Scholar]

62. Pankow J.S., Duncan B.B., Schmidt M.I., Ballantyne C.M., Couper D.J., Hoogeveen R.C., Golden S.H. Fasting plasma free fatty acids and risk of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes Care. 2004;27:77–82. doi:10.2337/diacare.27.1.77. [PubMed] [CrossRef] [Google Scholar]

63. Lingvay I., Guth E., Islam A., Livingston E. Rapid improvement in diabetes after gastric bypass surgery: Is it the diet or surgery? Diabetes Care. 2013;36:2741–2747. doi:10.2337/dc12-2316. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Taylor R. Calorie restriction and reversal of type 2 diabetes. Expert Rev. Endocrinol. Metab. 2016;11:521–528. doi:10.1080/17446651.2016.1239525. [PubMed] [CrossRef] [Google Scholar]

65. Varela J.E. Bariatric surgery: A cure for diabetes? Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:396–401. doi:10.1097/MCO.0b013e3283468e50. [PubMed] [CrossRef] [Google Scholar]

66. Ravussin E., Acheson K.J., Vernet O., Danforth E., Jéquier E. Evidence that insulin resistance is responsible for the decreased thermic effect of glucose in human obesity. J. Clin. Investig. 1985;76:1268–1273. doi:10.1172/JCI112083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Calcagno M., Kahleova H., Alwarith J., Burgess N.N., Flores R.A., Busta M.L., Barnard N.D. The thermic effect of food: A review. J. Am. Coll. Nutr. 2019;38:547–551. doi:10.1080/07315724.2018.1552544. [PubMed] [CrossRef] [Google Scholar]

68. Barnard N.D., Cohen J., Jenkins D.J., Turner-McGrievy G., Gloede L., Green A., Ferdowsian H. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: A randomized, controlled, 74-wk clinical trial. Am. J. Clin. Nutr. 2009;89:1588S–1596S. doi:10.3945/ajcn.2009.26736H. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Kahleova H., Klementova M., Herynek V., Skoch A., Herynek S., Hill M., Mari A., Pelikanova T. The effect of a vegetarian vs. conventional hypocaloric diabetic diet on thigh adipose tissue distribution in subjects with type 2 diabetes: A randomized study. J. Am. Coll. Nutr. 2017;36:364–369. doi:10.1080/07315724.2017.1302367. [PubMed] [CrossRef] [Google Scholar]

70. Kahleova H., Tura A., Hill M., Holubkov R., Barnard N.D. A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: A 16-week randomized clinical trial. Nutrients. 2018;10:189. doi:10.3390/nu10020189. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Kahleova H., Dort S., Holubkov R., Barnard N.D. A plant-based high-carbohydrate, low-fat diet in overweight individuals in a 16-week randomized clinical trial: The role of carbohydrates. Nutrients. 2018;10:1302. doi:10.3390/nu10091302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Barnard N.D., Scialli A.R., Turner-McGrievy G., Lanou A.J., Glass J. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am. J. Med. 2005;118:991–997. doi:10.1016/j.amjmed.2005.03.039. [PubMed] [CrossRef] [Google Scholar]

73. Flegal K.M., Shepherd J.A., Looker A.C., Graubard B.I., Borrud L.G., Ogden C.L., Harris T.B., Everhart J.E., Schenker N. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am. J. Clin. Nutr. 2009;89:500–508. doi:10.3945/ajcn.2008.26847. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Rebouche C.J. Carnitine. In: Shils M.E., Olson J.A., Shike M., Ross A.C., editors. Modern Nutrition in Health and Disease. 9th ed. Lippincott Williams and Wilkins; New York, NY, USA: 1999. pp. 505–512. [Google Scholar]

75. Fennema D., Phillips I.R., Shephard E.A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 2016;44:1839–1850. doi:10.1124/dmd.116.070615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. doi:10.1016/j.cell.2016.02.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi:10.1038/nm.3145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Barrea L., Annunziata G., Muscogiuri G., Di Somma C., Laudisio D., Maisto M., de Alteriis G., Tenore G.C., Colao A., Savastano S. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10:1971. doi:10.3390/nu10121971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Schugar R.C., Shih D.M., Warrier M., Helsley R.N., Burrows A., Ferguson D., Brown A.L., Gromovsky A.D., Heine M., Chatterjee A., et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 2017;19:2451–2461. doi:10.1016/j.celrep.2017.05.077. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Wu J., Boström P., Sparks L.M., Ye L., Choi J.H., Giang A.H., Khandekar M., Virtanen K.A., Nuutila P., Schaart G., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–376. doi:10.1016/j.cell.2012.05.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Wu W.K., Chen C.C., Liu P.Y., Panyod S., Liao B.Y., Chen P.C., Kao H.L., Kuo H.C., Kuo C.H., Chiu T.H.T., et al. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut. 2019;68:1439–1449. doi:10.1136/gutjnl-2018-317155. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Schiattarella G.G., Sannino A., Toscano E., Giugliano G., Gargiulo G., Franzone A., Trimarco B., Esposito G., Perrino C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017;38:2948–2956. doi:10.1093/eurheartj/ehx342. [PubMed] [CrossRef] [Google Scholar]

83. O’Neil C.E., Fulgoni V.L., 3rd, Nicklas T.A. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutr. J. 2015;14:64. doi:10.1186/s12937-015-0052-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Tan S.Y., Dhillon J., Mattes R.D. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am. J. Clin. Nutr. 2014;100:412S–422S. doi:10.3945/ajcn.113.071456. [PubMed] [CrossRef] [Google Scholar]

85. Krishnan S., Cooper J.A. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur. J. Nutr. 2014;53:691–710. doi:10.1007/s00394-013-0638-z. [PubMed] [CrossRef] [Google Scholar]

86. Schmidt D.E., Allred J.B., Kien C.L. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J. Lipid Res. 1999;40:2322–2332. [PubMed] [Google Scholar]

87. Piers L.S., Walker K.Z., Stoney R.M., Soares M.J., O’Dea K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br. J. Nutr. 2003;90:717–727. doi:10.1079/BJN2003948. [PubMed] [CrossRef] [Google Scholar]

88. Georgiadi A., Kersten S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 2012;3:127–134. doi:10.3945/an.111.001602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Hihi A.K., Michalik L., Wahli W. PPARs: Transcriptional effectors of fatty acids and their derivatives. Cell. Mol. Life Sci. 2002;59:790–798. doi:10.1007/s00018-002-8467-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Rangwala S.M., Lazar M.A. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol. Sci. 2004;25:331–336. doi:10.1016/j.tips.2004.03.012. [PubMed] [CrossRef] [Google Scholar]

91. Nolan J.J., Ludvik B., Beerdsen P., Joyce M., Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 1994;331:1188–1193. doi:10.1056/NEJM199411033311803. [PubMed] [CrossRef] [Google Scholar]

92. He W., Barak Y., Hevener A., Olson P., Liao D., Le J., Nelson M., Ong E., Olefsky J.M., Evans R.M. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA. 2003;100:15712–15717. doi:10.1073/pnas.2536828100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Tindall A.M., Petersen K.S., Lamendella R., Shearer G.C., Murray-Kolb L.E., Proctor D.N., Kris-Etherton P.M. Tree Nut consumption and adipose tissue mass: Mechanisms of action. Curr. Dev. Nutr. 2018;2:nzy069. doi:10.1093/cdn/nzy069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Dillard C.J., German J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000;80:1744–1756. doi:10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W. [CrossRef] [Google Scholar]

95. Rienks J., Barbaresko J., Nöthlings U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients. 2017;9:415. doi:10.3390/nu9040415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Nachvak S.M., Moradi S., Anjom-Shoae J., Rahmani J., Nasiri M., Maleki V., Sadeghi O. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Acad. Nutr. Diet. 2019;119:1483–1500. doi:10.1016/j.jand.2019.04.011. [PubMed] [CrossRef] [Google Scholar]

97. Kimble R., Keane K., Lodge J.K., Howatson G. Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and metaanalysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2019;59:3032–3043. doi:10.1080/10408398.2018.1509835. [PubMed] [CrossRef] [Google Scholar]

98. Knekt P., Kumpulainen J., Järvinen R., Rissanen H., Heliövaara M., Reunanen A., Hakulinen T., Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002;76:560–568. doi:10.1093/ajcn/76.3.560. [PubMed] [CrossRef] [Google Scholar]

99. Bertoia M.L., Rimm E.B., Mukamal K.J., Hu F.B., Willett W.C., Cassidy A. Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ. 2016;352:i17. doi:10.1136/bmj.i17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Vernarelli J.A., Lambert J.D. Flavonoid intake is inversely associated with obesity and C-reactive protein, a marker for inflammation, in US adults. Nutr. Diabetes. 2017;7:e276. doi:10.1038/nutd.2017.22. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Cases J., Romain C., Dallas C., Gerbi A., Cloarec M. Regular consumption of Fiit-ns, a polyphenol extract from fruit and vegetables frequently consumed within the Mediterranean diet, improves metabolic ageing of obese volunteers: A. randomized, double-blind, parallel trial. Int. J. Food. Sci. Nutr. 2015;66:120–125. doi:10.3109/09637486.2014.971229. [PubMed] [CrossRef] [Google Scholar]

102. Basu A., Sanchez K., Leyva M.J., Wu M., Betts N.M., Aston C.E., Lyons T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010;29:31–40. doi:10.1080/07315724.2010.10719814. [PubMed] [CrossRef] [Google Scholar]

103. Divakaruni A.S., Brand M.D. The regulation and physiology of mitochondrial proton-leak. Physiology. 2011;26:192–205. doi:10.1152/physiol.00046.2010. [PubMed] [CrossRef] [Google Scholar]

104. Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2:85–93. doi:10.1016/j.cmet.2005.06.002. [PubMed] [CrossRef] [Google Scholar]

105. Shabalina I.G., Backlund E.C., Bar-Tana J., Cannon B., Nedergaard J. Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism. Biochim. Biophys. Acta. 2008;1777:642–650. doi:10.1016/j.bbabio.2008.04.038. [PubMed] [CrossRef] [Google Scholar]

106. Lameloise N., Muzzin P., Prentki M., Assimacopoulos-Jeannet F. Uncoupling protein 2: A possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes. 2001;50:803–809. doi:10.2337/diabetes.50.4.803. [PubMed] [CrossRef] [Google Scholar]

107. Lee M.S., Kim Y. (−)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3–L1 adipocytes. Biosci. Biotechnol. Biochem. 2009;73:434–436. doi:10.1271/bbb.80563. [PubMed] [CrossRef] [Google Scholar]

108. Nomura S., Ichinose T., Jinde M., Kawashima Y., Tachiyashiki K., Imaizumi K. Tea catechins enhance the mrna expression of uncoupling protein 1 in rat brown adipose tissue. J. Nutr. Biochem. 2008;19:840–847. doi:10.1016/j.jnutbio.2007.11.005. [PubMed] [CrossRef] [Google Scholar]

109. Andrade J.M., Frade A.C., Guimaraes J.B., Freitas K.M., Lopes M.T., Guimaraes A.L. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur. J. Nutr. 2014;53:1503–1510. doi:10.1007/s00394-014-0655-6. [PubMed] [CrossRef] [Google Scholar]

110. Domínguez-Avila J.A., González-Aguilar G.A., Alvarez-Parrilla E., de la Rosa L.A. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int. J. Mol. Sci. 2016;17:1002. doi:10.3390/ijms17071002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Arcari D.P., Bartchewsky W., dos Santos T.W., Oliveira K.A., Funck A., Pedrazzoli J., de Souza M.F., Saad M.J., Bastos D.H., Gambero A., et al. Antiobesity effects of yerba mate extract (Ilex paraguariensis) in high-fat diet-induced obese mice. Obesity (Silver Spring). 2009;17:2127–2133. doi:10.1038/oby.2009.158. [PubMed] [CrossRef] [Google Scholar]

112. Park J.H., Lee S.H., Chung I.M., Park Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr. Res. Pract. 2012;6:322–327. doi:10.4162/nrp.2012.6.4.322. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Yang D.J., Chang Y.Y., Hsu C.L., Liu C.W., Wang Y., Chen Y.C. Protective effect of a litchi (Litchi chinensis Sonn.)-flower-water-extract on cardiovascular health in a high-fat/cholesterol-dietary hamsters. Food Chem. 2010;119:1457–1464. doi:10.1016/j.foodchem.2009.09.027. [CrossRef] [Google Scholar]

114. Jang H.H., Park M.Y., Kim H.W., Lee Y.M., Hwang K.A., Park J.H., Park D.S., Kwon O. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutr. Metab. 2012;9:27. doi:10.1186/1743-7075-9-27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Serisier S., Leray V., Poudroux W., Magot T., Ouguerram K., Nguyen P. Effects of green tea on insulin sensitivity, lipid profile and expression of pparalpha and ppargamma and their target genes in obese dogs. Br. J. Nutr. 2008;99:1208–1216. doi:10.1017/S0007114507862386. [PubMed] [CrossRef] [Google Scholar]

116. Herranz-Lopez M., Barrajon-Catalan E., Segura-Carretero A., Menendez J.A., Joven J., Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through ampk-dependent mechanisms. Phytomedicine. 2015;22:605–614. doi:10.1016/j.phymed.2015.03.015. [PubMed] [CrossRef] [Google Scholar]

117. Kuo D.H., Yeh C.H., Shieh P.C., Cheng K.C., Chen F.A., Cheng J.T. Effect of shanzha, a chinese herbal product, on obesity and dyslipidemia in hamsters receiving high-fat diet. J. Ethnopharmacol. 2009;124:544–550. doi:10.1016/j.jep.2009.05.005. [PubMed] [CrossRef] [Google Scholar]

118. Rigacci S., Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int. J. Mol. Sci. 2016;17:843. doi:10.3390/ijms17060843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Razquin C., Sanchez-Tainta A., Salas-Salvado J., Buil-Cosiales P., Corella D., Fito M., Ros E., Estruch R., Aros F., Gomez-Gracia E., et al. Dietary energy density and body weight changes after 3 years in the predimed study. Int. J. Food Sci. Nutr. 2017;68:865–872. doi:10.1080/09637486.2017.1295028. [PubMed] [CrossRef] [Google Scholar]

120. Cândido F.G., Valente F.X., Silva L.E., Coelho O.G.L., Peluzio M.C.G., Alfenas R.C.G. Consumption of extra virgin olive oil improves body composition and blood pressure in women with excess body fat: A randomized, double-blinded, placebo-controlled clinical trial. Eur. J. Nutr. 2017;57:2445–2455. doi:10.1007/s00394-017-1517-9. [PubMed] [CrossRef] [Google Scholar]

121. Rodriguez-Villar C., Manzanares J.M., Casals E., Perez-Heras A., Zambon D., Gomis R., Ros E. High-monounsaturated fat, olive oil-rich diet has effects similar to a high-carbohydrate diet on fasting and postprandial state and metabolic profiles of patients with type 2 diabetes. Metabolism. 2000;49:1511–1517. doi:10.1053/meta.2000.18573. [PubMed] [CrossRef] [Google Scholar]

122. Maki K.C., Lawless A.L., Kelley K.M., Kaden V.N., Geiger C.J., Dicklin M.R. Corn oil improves the plasma lipoprotein lipid profile compared with extra-virgin olive oil consumption in men and women with elevated cholesterol: Results from a randomized controlled feeding trial. J. Clin. Lipidol. 2015;9:49–57. doi:10.1016/j.jacl.2014.10.006. [PubMed] [CrossRef] [Google Scholar]

123. Keita H., Ramírez-San Juan E., Paniagua-Castro N., Garduño-Siciliano L., Quevedo L. The long-term ingestion of a diet high in extra virgin olive oil produces obesity and insulin resistance but protects endothelial function in rats: A preliminary study. Diabetol. Metab. Syndr. 2013;5:53. doi:10.1186/1758-5996-5-53. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Oi-Kano Y., Kawada T., Watanabe T., Koyama F., Watanabe K., Senbongi R., Iwai K. Extra virgin olive oil increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J. Nutr. Biochem. 2007;18:685–692. doi:10.1016/j.jnutbio.2006.11.009. [PubMed] [CrossRef] [Google Scholar]

125. Rodríguez V.M., Portillo M.P., Picó C., Macarulla M.T., Palou A. Olive oil feeding up-regulates uncoupling protein genes in rat brown adipose tissue and skeletal muscle. Am. J. Clin. Nutr. 2002;75:213–220. doi:10.1093/ajcn/75.2.213. [PubMed] [CrossRef] [Google Scholar]

126. Rizzo N.S., Jaceldo-Siegl K., Sabate J., Fraser G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013;113:1610–1619. doi:10.1016/j.jand.2013.06.349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Churuangsuk C., Kherouf M., Combet E., Lean M. Low-carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obes. Rev. 2018;19:1700–1718. doi:10.1111/obr.12744. [PubMed] [CrossRef] [Google Scholar]

128. Hall K.D., Guo J. Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718–1727. doi:10.1053/j.gastro.2017.01.052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Hall K.D., Bemis T., Brychta R., Chen K.Y., Courville A., Crayner E.J., Goodwin S., Guo J., Howard L., Knuth N.D., et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22:427–436. doi:10.1016/j.cmet.2015.07.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Zhang B., Zhao Q., Guo W., Bao W., Wang X. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: A systematic review and dose–response meta-analysis from prospective cohort studies. Eur. J. Clin. Nutr. 2017;72:57–65. doi:10.1038/ejcn.2017.149. [PubMed] [CrossRef] [Google Scholar]

131. Marventano S., Izquierdo Pulido M., Sanchez-Gonzalez C., Godos J., Speciani A., Galvano F., Grosso G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr. 2017;20:245–254. doi:10.1017/S1368980016002299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Li H., Li J., Shen Y., Wang J., Zhou D. Legume consumption and all-cause and cardiovascular disease mortality. Biomed. Res. Int. 2017;2017:8450618. doi:10.1155/2017/8450618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Wang X., Ouyang Y., Liu J., Zhu M., Zhao G., Bao W., Hu F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490. doi:10.1136/bmj.g4490. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Hall K.D., Chen K.Y., Guo J., Lam Y.Y., Leibel R.L., Mayer L.E., Reitman M.L., Rosenbaum M., Smith S.R., Walsh B.T., et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016;104:324–333. doi:10.3945/ajcn.116.133561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol. Sci. 2004;19:92–96. doi:10.1152/nips.01459.2003. [PubMed] [CrossRef] [Google Scholar]

136. Rosenbaum M., Hall K.D., Guo J., Ravussin E., Mayer L.S., Reitman M.L., Smith S.R., Walsh B.T., Leibel R.L. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity. 2019;27:971–981. doi:10.1002/oby.22468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Schwingshackl L., Hoffmann G. Low-carbohydrate diets impair flow-mediated dilatation: Evidence from a systematic review and meta-analysis. Br. J. Nutr. 2013;110:969–970. doi:10.1017/S000711451300216X. [PubMed] [CrossRef] [Google Scholar]

138. Merino J., Kones R., Ferré R., Plana N., Girona J., Aragonés G., Ibarretxe D., Heras M., Masana L. Negative effect of a low-carbohydrate, high-protein, high-fat diet on small peripheral artery reactivity in patients with increased cardiovascular risk. Br. J. Nutr. 2013;109:1241–1247. doi:10.1017/S0007114512003091. [PubMed] [CrossRef] [Google Scholar]

139. Higashi Y., Noma K., Yoshizumi M., Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009;73:411–418. doi:10.1253/circj.CJ-08-1102. [PubMed] [CrossRef] [Google Scholar]

140. Fleming R.M. The effect of high-protein diets on coronary blood flow. Angiology. 2000;51:817–826. doi:10.1177/000331970005101003. [PubMed] [CrossRef] [Google Scholar]

141. Seidelmann S.B., Claggett B., Cheng S., Henglin M., Shah A., Steffen L.M., Folsom A.R., Rimm E.B., Willett W.C., Solomon S.D., et al. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health. 2018;3:e419–e428. doi:10.1016/S2468-2667(18)30135-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Dinu M., Abbate R., Gensini G.F., Casini A., Sofi F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017;57:3640–3649. doi:10.1080/10408398.2016.1138447. [PubMed] [CrossRef] [Google Scholar]

143. Ornish D., Brown S.E., Scherwitz L.W., Billings J.H., Armstrong W.T., Ports T.A., McLanahan S.M., Kirkeeide R.L., Brand R.J., Gould K.L. Can lifestyle changes reverse coronary heart disease? The lifestyle heart trial. Lancet Lond. Engl. 1990;336:129–133. doi:10.1016/0140-6736(90)91656-U. [PubMed] [CrossRef] [Google Scholar]

144. Esselstyn C.B., Jr., Gendy G., Doyle J., Golubic M., Roizen M.F. A way to reverse CAD? J. Fam. Pract. 2014;63:356–364. [PubMed] [Google Scholar]

145. Romeu M., Aranda N., Giralt M., Ribot B., Nogues M.R., Arija V. Diet, iron biomarkers and oxidative stress in a representative sample of Mediterranean population. Nutr. J. 2013;12:102. doi:10.1186/1475-2891-12-102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Ornish D., Weidner G., Fair W.R., Marlin R., Pettengill E.B., Raisin C.J., Dunn-Emke S., Crutchfield L., Jacobs F.N., Barnard R.J., et al. Intensive lifestyle changes may affect the progression of prostate cancer. J. Urol. 2005;174:1065–1069. doi:10.1097/01.ju.0000169487.49018.73. [PubMed] [CrossRef] [Google Scholar]

147. Barnard R.J., Gonzalez J.H., Liva M.E., Ngo T.H. Effects of a low-fat, high-fiber diet and exercise program on breast cancer risk factors in vivo and tumor cell growth and apoptosis in vitro. Nutr. Cancer. 2006;55:28–34. doi:10.1207/s15327914nc5501_4. [PubMed] [CrossRef] [Google Scholar]

148. Ornish D., Lin J., Chan J.M., Epel E., Kemp C., Weidner G., Marlin R., Frenda S.J., Magbanua M.J., Daubenmier J., et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14:1112–1120. doi:10.1016/S1470-2045(13)70366-8. [PubMed] [CrossRef] [Google Scholar]

149. Satija A., Bhupathiraju S.N., Spiegelman D., Chiuve S.E., Manson J.E., Willett W., Rexrode K.M., Rimm E.B., Hu F.B. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J. Am. Coll. Cardiol. 2017;70:411–422. doi:10.1016/j.jacc.2017.05.047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Satija A., Bhupathiraju S.N., Rimm E.B., Spiegelman D., Chiuve S.E., Borgi L., Willett W.C., Manson J.E., Sun Q., Hu F.B. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLoS Med. 2016;13:e1002039. doi:10.1371/journal.pmed.1002039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Kim H., Caulfield L.E., Rebholz C.M. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J. Nutr. 2018;148:624–631. doi:10.1093/jn/nxy019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Bolori P., Setaysh L., Rasaei N., Jarrahi F., Saeid Yekaninejad M. Adherence to a healthy plant diet may reduce inflammatory factors in obese and overweight women-a cross-sectional study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019;13:2795–2802. doi:10.1016/j.dsx.2019.07.019. [PubMed] [CrossRef] [Google Scholar]

Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights (2024)

References

Top Articles
Latest Posts
Article information

Author: Corie Satterfield

Last Updated:

Views: 5631

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Corie Satterfield

Birthday: 1992-08-19

Address: 850 Benjamin Bridge, Dickinsonchester, CO 68572-0542

Phone: +26813599986666

Job: Sales Manager

Hobby: Table tennis, Soapmaking, Flower arranging, amateur radio, Rock climbing, scrapbook, Horseback riding

Introduction: My name is Corie Satterfield, I am a fancy, perfect, spotless, quaint, fantastic, funny, lucky person who loves writing and wants to share my knowledge and understanding with you.